Addition of Methyl Grignard Reagents to Germasilenes and Digermenes: Unusual Ligand Exchange Reaction of the Resulting Germyl Grignard Reagents

Craig E. Dixon, Matthew R. Netherton, and Kim M. Baines*

Contribution from the Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

Received May 22, 1998

Abstract: Methylmagnesium iodide (or bromide) has been found to add to tetramesitylgermasilene and tetramesityldigermene. The addition to the germasilene is regioselective, with the methyl group adding to the silicon end of the silicon–germanium double bond to produce a germylmagnesium iodide (or bromide) species. The germyl Grignard reagents give the corresponding germanes upon hydrolysis. At 110 °C in the presence of excess methylmagnesium halide, the mesityl substituents on the germyl Grignard reagent germanium atom were exchanged for methyl groups. A mechanism involving the α -elimination of MesMgX followed by the addition of MeMgX to the intermediate germylene has been proposed to explain the observed ligand exchange. Evidence for the presence of intermediate germylenes has been obtained in trapping experiments with 2,3-dimethylbutadiene.

Introduction

Much has been learned about the chemistry of relatively stable or stable disilenes, germasilenes, and digermenes since the discovery of these compounds about 15 years ago.¹ Surprisingly, however, the reactivity of these compounds toward Grignard reagents is completely unknown. The only reports, to our knowledge, on the reaction between Grignard reagents and doubly bonded silicon or germanium compounds involve the reaction with a stable silene² or a stable germaphosphene.³ With such a paucity of information available, we decided to investigate the reaction between Grignard reagents and tetramesitylgermasilene. In particular, we were interested in the regiochemistry of the reaction, if, indeed, the Grignard reagent added. Furthermore, considering the recent interest in the generation and chemistry of both germyl⁴ and silyl⁵ Grignard

(3) Escudié, J.; Couret, C.; Andrianarison, M.; Satgé, J. J. Am. Chem. Soc. 1987, 109, 386–390.

(4) (a) Castel, A.; Rivière, P.; Satgé, J.; Ko, Y.-H. J. Organomet. Chem.
1988, 342, C1-C4. (b) Castel, A.; Rivière, P.; Satgé, J.; Ahbala, M.;
Abdennadher, C.; Desor, D. Main Group Met. Chem. 1993, 16, 291-303.
(c) Mochida, K.; Chiba, H. J. Organomet. Chem. 1994, 473, 45-54. (d)
Nosov, K. S.; Lalov, A. V.; Egorov, M. P.; Nefedov, O. M. Russ. Chem.
Bull. 1996, 45, 2673-2674.

(5) (a) Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. **1990**, 112, 5609–5617. (b) Comins, D. L.; Killpack, M. O. J. Am. Chem. Soc. **1992**, 114, 10972–10974. (c) Krempner, C.; Oehme, H. J. Organomet. Chem. **1994**, 464, C7–C10. (d) Krempner, C.; Reinke, H.; Oehme, H. Angew. Chem., Int. Ed. Engl. **1994**, 33, 1615–1618. (e) Goddard, R.; Krüger, C.; Ramadan, N. A.; Ritter, A. Angew. Chem., Int. Ed. Engl. **1995**, 34, 1030–1032.

reagents, the addition of Grignard reagents to germasilenes appeared to be a potentially novel way of generating these compounds. Thus, the reaction between tetramesitylgermasilene and -digermene (for comparison purposes) and methyl Grignard reagents was examined under different conditions.

Results and Discussion

The thermolysis⁶ or photolysis⁷ of hexamesitylsiladigermirane (1) has been shown to give tetramesitylgermasilene and dimesitylgermylene regioselectively. Hexamesitylsiladigermirane is unreactive toward methylmagnesium bromide in the dark. Similarly, the thermolysis⁸ or photolysis⁹ of hexamesitylcyclotrigermane¹⁰ (2) yields tetramesityldigermene and dimesitylgermylene (eq 1).

Hexamesitylsiladigermirane (1) was photolyzed at -78 °C in toluene in the presence of excess tris(trimethylsilyl)silane.¹¹ Methylmagnesium bromide was then added to the yellow solution in the cold. The color of the solution did not fade,

^{*} To whom correspondence should be addressed. E-mail: kbaines2@ julian.uwo.ca.

⁽¹⁾ Reviews: (a) Okazaki, R.; West, R. Adv. Organomet. Chem. **1996**, 39, 231–273. (b) Raabe, G.; Michl, J. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley; New York, 1989; pp 1015–1142. (c) West, R. Angew. Chem., Int. Ed. Engl. **1987**, 26, 1201–1211. (d) Baines, K. M.; Stibbs, W. G. Adv. Organomet. Chem. **1996**, 39, 275–324. (e) Escudié, J.; Couret, C.; Ranaivonjatovo, H.; Satgé, J. Coord. Chem. Rev. **1994**, 130, 427–480.

⁽²⁾ Brook, A. G.; Chiu, P.; McClenaghnan, J.; Lough, A. J. Organometallics 1991, 10, 3292-3301.

⁽⁶⁾ Baines, K. M.; Cooke, J. A. Organometallics 1991, 10, 3419–3421.
(7) Baines, K. M.; Cooke, J. A. Organometallics 1992, 11, 3487–3488.
(8) Ando, W.; Tsumuraya, T. J. Chem. Soc., Chem. Commun. 1989, 770–

⁽⁶⁾ Ando, w., Isuniaraya, T. J. Chem. Soc., Chem. Commun. 1969, 770 772.

⁽⁹⁾ Ando, W.; Sato, S.; Tsumuraya, T. Organometallics **1988**, 7, 2015–2019.

⁽¹⁰⁾ Ando, W.; Tsumuraya, T. J. Chem. Soc., Chem. Commun. 1987, 1514–1515.

⁽¹¹⁾ Our initial attempts to separate the products from the photolysis of 1 at -78 °C in toluene in the presence of Et₃SiH as a trapping reagent for Mes₂Ge: were unsuccessful, and thus (Me₃Si)₃SiH was chosen as an alternative trapping reagent: Pannell, K. H.; Brun, M.-C.; Sharma, H.; Jones, K.; Sharma, S. *Organometallics* **1994**, *13*, 1075–1077.

1

and thus the reaction mixture was warmed slowly to room temperature. The reaction mixture was hydrolyzed using aqueous NH₄Cl. Two major products, **5** and **6**, were observed by ¹H NMR spectroscopy in approximately a 1:1 ratio (eq 2).

or 2
$$\begin{array}{c} 1) \ \text{excess (Me_3Si)_3SiH, -78 °C, hv} \\ \hline 2) \ \text{excess CH_3MgBr, -78 °C} \\ \hline 3) \ \text{RT, NH_4Cl} \end{array}$$

$$\begin{array}{c} Mes \ Ge-Mes \ + \ Mes-Ge-H \ (2) \ H \ Ge-Mes \ H \ (Me_3SiO)_2Si \ Me_3Si \ Ge-Si \ Me_3Si \ Ge-Si \ Mes \ Mes \ Ge-Si \ Mes \ Mes \ Mes \ Ge-Si \ Mes \ Mes$$

Compound **5** was readily identified by NMR and IR spectroscopy and mass spectrometry. The ¹H NMR spectrum of **5** exhibited resonances for two different mesityl groups as well as singlets consistent with an M–H moiety (5.73 ppm) and an M–Me group (1.24 ppm). The IR spectrum showed an absorbance at 2026 cm⁻¹, which supports the assignment of the M–H resonance in the ¹H NMR spectrum as Ge–H. The resonance observed at -17.83 ppm in the ²⁹Si NMR spectrum of **5** is not in the correct chemical shift range for a diaryl Si–H moiety. The ²⁹Si NMR chemical shift for the isomeric Mes₂-MeGeSiHMes₂ was observed at -48.41 ppm (¹*J*_{Si–H} = 189 Hz),¹² confirming the assigned regiochemistry of **5**.

Compound 6 was also identified by IR and NMR spectroscopy and mass spectrometry. The ¹H NMR spectrum of 6 revealed one type of mesityl group, one M-H resonance at 5.32 ppm, and two different trimethylsilyl groups in a ratio of 2:1. The highest mass ion was found at m/z 592. Exact mass determination of the parent ion corresponded to a molecular formula of C₂₇H₅₀GeO₂Si₄. The IR absorption at 1995 cm⁻¹ as well as the absence of any large coupling in the ¹H-coupled ²⁹Si NMR spectrum led to the assignment of the Ge-H moiety. The chemical shifts of 8.71 and -20.58 ppm in the ²⁹Si NMR spectrum are consistent with a trimethylsiloxy- and a silylsubstituted trimethylsilyl group, respectively.¹³ All these data led to the structural assignment of 6. The structure (Me₃Si)₂- $(Me_3SiO)SiOGeMes_2H$ was eliminated on the basis of the chemical shift of the germane hydrogen (5.32 ppm). Silylsubstituted dimesitylgermanes have a chemical shift of approximately 5-6 ppm (for example: MeMes₂SiGeMes₂H, GeH at 5.73 ppm; MeOMes₂SiGeMes₂H, GeH at 5.57 ppm⁶), whereas the chemical shifts of alkoxy- or chloro-substituted dimesitylgermanes are typically about 1 ppm downfield (for example: (MeO)Mes₂GeH, GeH at 6.67 ppm;⁶ ClMes₂GeH, GeH at 6.7 ppm¹⁴). The formation of **6** is, indeed, surprising. It is known that the addition of the Grignard reagent to tetramesityldigermene (and, presumably, also the germasilene) is not related to the formation of 6: photolysis of hexamesitylcyclotrigermane (2) at -70 °C in toluene in the presence of HSi-(SiMe₃)₃ followed by quenching with methanol gave a 1:1 ratio of 6 and Mes₂Ge(OMe)GeHMes₂.⁶ It is possible that dimesitylgermylene inserts preferentially into the product of autoxidation of HSi(SiMe₃)₃, HSi(SiMe₃)(OSiMe₃)₂, which may have been present in small amounts.¹⁵ We are continuing to investigate this possibility.

To compare the observed reactivity of tetramesitylgermasilene and methylmagnesium bromide with tetramesityldigermene, hexamesitylcyclotrigermane (2) was photolyzed at -78 °C in the presence of excess HSi(SiMe₃)₃ (eq 2). Addition of Grignard reagent to a cold solution of the digermene resulted in the immediate discharge of the yellow-green color associated with the digermene. Following quenching of the reaction mixture with aqueous NH₄Cl, two products, **6** and **7**,^{4b} were formed in a 1:1 ratio as determined by ¹H NMR spectroscopy.

Cophotolysis of either hexamesitylsiladigermirane or -cyclotrigermane in the presence of methylmagnesium iodide at approximately -70 °C also results in the formation of **5** and **7**, respectively, in addition to MeMes₂GeH¹⁶ (**8**), apparently from addition of the Grignard reagent to dimesitylgermylene. Thus, at low temperature, it appears that the Grignard reagent will add across the double bond of the dimetallene (generated by the photolysis of **1** or **2**), producing a germyl Grignard intermediate, which can be protonated by hydrolysis to give the observed products (eq 3). With tetramesitylgermasilene,

the anionic portion of the Grignard reagent adds to the silicon end of the Si–Ge double bond regioselectively. The high regioselectivity is, most probably, the result of the greater electronegativity of germanium in comparison to that of silicon,¹⁷ although the greater strength of the Si–C versus the Ge–C bond may contribute.¹⁸ The regioselectivity of the cleavage of the π bond of the germasilene is the same as that observed in the anionic cleavage of Si–Ge σ bonds.¹⁹

The initial results suggest that addition of methylmagnesium halides to the M_1-M_2 double bonds of germasilenes and digermenes is straightforward. However, when tetramesitylgermasilene or -digermene was generated thermally from 1 or 2, respectively, in the presence of an excess of methylmagnesium bromide or iodide, some very unexpected chemistry was observed. Thermolysis of 1 in the presence of methylmagnesium bromide followed by quenching with aqueous NH₄Cl yielded a single product, 9, in very high yield (eq 4). Compound 9 was identified by NMR and IR spectroscopy and mass spectrometry. The ¹H NMR spectrum showed one distinct mesityl group along with a septet, a singlet, and a doublet

⁽¹²⁾ Baines, K. M.; Groh, R. J.; Joseph, B.; Parshotam, U. Organometallics 1992, 11, 2176–2180.

⁽¹³⁾ Marsmann, H. In *NMR Basic Principles and Progress*; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: Berlin, 1981; Vol. 17, pp 65–235.

⁽¹⁴⁾ Rivière, P.; Rivière-Baudet, M.; Castel, A.; Satgé, J. Synth. React. Inorg. Met.-Org. Chem. 1987, 17, 539-557.

⁽¹⁵⁾ Chatgilialoglu, C.; Guarini, A.; Guerrini, A.; Seconi, G. J. Org. Chem. 1992, 57, 2207-2208.

⁽¹⁶⁾ Castel, A.; Rivière, P.; Satgé, J.; Ko, H. Y. Organometallics 1990, 9, 205-210.

^{(17) (}a) Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. **1958**, *5*, 269–288. (b) Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. **1958**, *5*, 264–268. (c) Allred, A. L. J. Inorg. Nucl. Chem. **1961**, *17*, 215–221.

^{(18) (}a) Jackson, R. A. J. Organomet. Chem. **1979**, *166*, 17–19. (b) Basch, H.; Hoz, T. In *The Chemistry of Organic Germanium, Tin and Lead Compounds*; Patai, S., Ed.; Wiley, New York, 1995; pp 1–96. The strength of the Si(Ge)–Mg bond is unknown.

^{(19) (}a) Kabaki, M.; Inoue, S.; Nagata, Y.; Sato, Y. Synth. Commun. **1990**, 20, 3245–3252. (b) Mochida, K.; Suzuki, H.; Nanba, M.; Kugita, T.; Yokoyama, Y. J. Organomet. Chem. **1995**, 499, 83–88. (c) Dixon, C. E.; Liu, H. W.; Vander Kant, C. M.; Baines, K. M. Organometallics **1996**, 15, 5701–5705.

consistent with the Ge–H, the Si–CH₃, and the Ge(CH₃)₂ moieties found in **9**, respectively. The IR spectrum exhibited an absorbance at 2100 cm⁻¹, which is consistent with a Ge–H stretching vibration. The ²⁹Si NMR resonance at -20.20 ppm, again, suggests the absence of a diaryl Si–H moiety.

Similarly, thermolysis of **2** in the presence of an excess of methylmagnesium iodide followed by quenching with aqueous NH₄Cl yielded a single product, **10** (eq 4). The spectral data of **10** were very similar to those of **9**.

The isolation of **9** and **10** as the sole reaction products from the above experiments was interesting for a number of reasons. First, there appears to have been an exchange of mesityl groups for methyl groups at the germanium atom. Second, there were no compounds observed that were obviously derived from reaction between dimesitylgermylene and the Grignard reagent. The products of the cyclotrigermane thermolyses in the presence of the Grignard reagent vary with time. For example, if the thermolysis of **2** is quenched after 4 h, products **8** and **11** are isolated; however, after 18 h, products **10** and **11** are obtained. The ratio of the products also appears to be dependent on the reaction conditions. Compound **10** is the only product formed when the amount of ether (the Grignard reagent solvent) is kept to a minimum. The isolation of **11** suggests that the mesitylmethyl exchange was occurring in a stepwise manner.

$$\begin{array}{c} \operatorname{Mes}\operatorname{Mes}\\ -\operatorname{Hes}\\ \operatorname{Mes}\\ -\operatorname{Ge}\\ -\operatorname{Ge}\\ -\operatorname{Ge}\\ -\operatorname{Ge}\\ -\operatorname{Ge}\\ -\operatorname{H}_3 \\ +\operatorname{Hes}\\ -\operatorname{Hes}\\ -\operatorname{He$$

To explain the mesityl-methyl exchange, one may invoke an α -elimination of MesMgBr from the initially formed germyl Grignard species 12 to generate the metallylgermylene 13 (Scheme 1). A second equivalent of methylmagnesium bromide may then add to the metallylgermylene intermediate to give the germyl Grignard species 14. A similar series of α -eliminations and additions would result in the formation of the germyl Grignard species 15. Hydrolysis of 15 (M = Si) would yield 9, whereas hydrolysis of both intermediates 14 and 15 (M = Ge) would give 11 and 10, respectively.

There are accounts in the literature that offer precedents for the proposed mechanism. For example, Glockling and Hooton have reported that Bu₃SnLi apparently dissociates, by α -elimination, to Bu₂Sn: and BuLi.²⁰ A similar α -elimination has been reported by Castel and co-workers to occur from Ph₂GeHLi to give LiH and the corresponding germylene species, which reacts further to yield polygermanes, following hydrolysis.¹⁶ Furthermore, Seyferth²¹ and others²² have postulated that diorganogermylenes, R₂Ge:, may react with Grignard reagents, RMgX, to form germyl Grignard species of the type R₃GeMgX.

Confirmation of the presence of a germyl Grignard reagent, as proposed in the above mechanism, was obtained by trapping experiments with deuterium oxide. Thermolysis of hexamesitylsiladigermirane in the presence of an excess of methylmag-

nesium bromide yielded 16 upon quenching of the reaction mixture with D_2O (eq 5). This result supports the presumption

that the final product in each of the thermolysis experiments is basic in nature and that the compound is, presumably, **15**.

Central to this mechanism is the assumption that the firstformed intermediate in these thermolyses reactions is the germyl Grignard reagent 12. When a solution of 12^{23} and 17, generated by photolysis of 1 or 2 at -70 °C in the presence of an excess of methylmagnesium iodide, is heated to 110 °C followed by hydrolysis with aqueous NH₄Cl, 9 (M = Si) and 10 (M = Ge) are isolated as the sole products of reaction, respectively (eq 6). The formation of 9 and 10 from solutions containing

intermediates 12 and 17 supports the idea that intermediates 12 (M = Si or Ge) and 17 are formed first upon the thermolysis of hexamesitylsiladigermirane or -cyclotrigermane in the presence of methylmagnesium halide, and that thermolysis of 12 (M = Si or Ge) and 17 ultimately leads to 9 and 10, respectively. Consistent with the earlier thermolyses, there were no products isolated from either experiment that could be identified as being derived from reaction of intermediate 17, which is the expected product of reaction from dimesitylgermylene and methylmagnesium bromide or iodide.

It is believed that intermediate **17** also undergoes a series of α -eliminations (of MesMgX) and additions of CH₃MgX, the end result of which is the production of trimethylgermylmagnesium halide. Upon hydrolysis, however, trimethylgermyl-

⁽²⁰⁾ Glockling, F.; Hooton, K. A. J. Chem. Soc. 1963, 1849-1854.

⁽²¹⁾ Seyferth, D. J. Am. Chem. Soc. 1957, 79, 2738-2740.

⁽²²⁾ Mendelsohn, J.-C.; Metras, F.; Lahournère, J.-C.; Valade, J. J. Organomet. Chem. 1968, 12, 327-340.

⁽²³⁾ The presence of **12** (M = Si or M = Ge) and **17** was confirmed prior to heating by analysis of an aliquot of the reaction mixture. Following hydrolysis of the aliquot, the only products observable by ¹H NMR spectroscopy were **5** (M = Si) or **7** (M = Ge) and **8**.

magnesium halide will yield trimethylgermane, which is a relatively volatile compound (bp = 26 °C) and, thus, difficult to isolate. To support, or exclude, the formation of Me₃GeH when intermediate 17 is heated in the presence of an excess of methylmagnesium iodide, hexamesitylcyclotrigermane was heated to 110 °C for 12 h in the presence of excess methylmagnesium iodide. Following hydrolysis with NH₄Cl, analysis of the headspace gas revealed the presence of two additional compounds in the GC-MS trace, as compared to the GC-MS trace of the headspace gas of the reaction mixture prior to hydrolysis. One of the compounds was readily identified as mesitylene (1.3.5-trimethylbenzene) by comparison of the experimental mass spectrum with the known mass spectrum for mesitylene. The mass spectrum of the other compound was found to be consistent with Me₃GeH. There was a fragment cluster at m/z118.24 A comparison of the calculated theoretical cluster for $C_3H_{10}Ge$ to the experimental fragment cluster found at m/z 118 showed a very good correlation between the observed and calculated isotopic ratios. Thus, Me₃GeH appears to be a product in the thermolysis of hexamesitylcyclotrigermane in the presence of excess methylmagnesium iodide.

Intercepting a reactive intermediate proposed to be participating in a reaction has long been taken as evidence for the existence of that intermediate and, thus, taken as support for a proposed mechanism. Therefore, support for the α -elimination mechanism may be obtained by intercepting any of the proposed germylene intermediates thought to be produced by the α -elimination of MesMgBr. Since conjugated dienes are wellknown traps for germylene species,²⁵ any germylene intermediates produced during the thermolysis experiments should readily be intercepted by the diene. Isolation of any such trapped germylene species could be taken as strong evidence for the presence of these species in the reaction mixture and, furthermore, taken as evidence for the operation of the proposed α -elimination mechanism.

Photolysis of hexamesitylcyclotrigermane in the presence of exactly 2 equiv of methylmagnesium iodide produced a solution of **12** (M = Ge) and **17** in a 1:1 ratio as determined by examination of a hydrolyzed aliquot by¹H NMR spectroscopy. Addition of 2,3-dimethylbutadiene to the solution of **12** (M = Ge) and **17** followed by heating of the reaction mixture to 110 °C for several hours produced **18** and **19** (eq 7).

The identification of **18** was readily achieved by ¹H and ¹³C NMR spectroscopy and mass spectrometry. The ¹H NMR spectrum exhibited resonances for two different mesityl groups in a ratio of 2:1 as well as a singlet at 0.98 ppm, which is assigned to the Ge–CH₃ group. Moreover, a singlet at 1.69 ppm in the ¹H NMR spectrum is consistent with the vinylic methyl group of the germacyclopentene ring. There is also an AB spin system (2.05 and 2.28 ppm; $J_{AB} = 15$ Hz) in the¹H NMR spectrum, which is compatible with the methylene hydrogen atoms of the germacyclopentene structure assigned to **18**. The DEPT and ¹H/¹³C HETCOR NMR spectra are each supportive of these assignments. For example, the DEPT NMR spectrum identifies the signal found at 30.76 ppm in the ¹³C

NMR spectrum as CH₂, and the HETCOR NMR spectrum demonstrated that this signal correlates with the resonances at 2.05 and 2.28 ppm in the ¹H dimension. Furthermore, resonances found at 18.92 and 4.69 ppm were shown to be CH₃ by the DEPT NMR spectrum, and these signals correlated with resonances at 1.69 and 0.98 ppm in the ¹H NMR spectrum, which are assigned to the $=C-CH_3$ and $Ge-CH_3$ moieties, respectively. The IR and mass spectra also agree with the assignment for 18. Compound 19 was readily identified by ¹H and ¹³C NMR spectroscopy. Resonances for a single mesityl group and two singlets, which may be assigned to the C=C-CH₃ (1.75 ppm) and Ge-CH₃ (0.41 ppm) methyl groups in structure **19**, were observed in the ¹H NMR spectrum. Signals consistent with an AB spin system (1.68 and 2.02 ppm; $J_{AB} =$ 15 Hz) were also clearly observable in the ¹H NMR spectrum, which is again entirely compatible with the assigned germacyclopentene structure of 19. The ¹³C NMR spectrum exhibited the correct number of resonances, which are in the correct chemical shift range for the carbon atoms found in the above structure. Again, the IR and mass spectra also agree with the assignment for 19.

Structures **18** and **19** are consistent with the trapping of mesityl(dimesitylmethylgermyl)germylene (**13**, M = Ge, Scheme 1) and mesitylmethylgermylene (produced by α -elimination of MesMgI from **17**) by 2,3-dimethylbutadiene. The formation of these germylene intermediates is consistent with the α -elimination mechanism proposed for the mesityl—methyl substitution observed in the thermolysis experiments. Thus, isolation of **18** and **19** is taken as support for the operation of this mechanistic pathway.

Summary

In summary, the work detailed in this paper represents the first investigations into dimetallene reactivity toward Grignard reagents. It has been found that, under mild conditions, methylmagnesium halide will add, with apparently high regioselectivity, to tetramesitylgermasilene. The methyl group of the Grignard reagent adds to the silicon atom of the Si–Ge double bond, producing an intermediate germyl Grignard species. The germyl Grignard species so produced can then be protonated upon hydrolysis to yield the corresponding germane.

Likewise, tetramesityldigermene will add methylmagnesium halide under mild conditions to yield a germyl Grignard reagent that gives the corresponding germane upon hydrolysis. Qualitatively, MeMgX adds more readily to the digermene (rapid reaction at -78 °C), compared to the germasilene (reaction at approximately -10 °C) presumably because of the greater polarizability of the Ge–Ge double bond. The nature of the addition is unknown at this point.

⁽²⁴⁾ Shifts in mass peaks to lower apparent masses have been reported in ion trap mass spectrometry: Bortolini, O.; Traldi, P. In *Practical Aspects of Ion Trap Mass Spectrometry*; March, R. E., Todd, J. F. J., Eds.; CRC Press: Boca Raton, FL, 1995; Vol. 2, pp 145–159.

^{(25) (}a) Neumann, W. P. Chem. Rev. **1991**, 91, 311–334. (b) Rivière, P.; Rivière-Baudet, M.; Satgé, J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 2, pp 399–518. (c) Rivière, P.; Rivière-Baudet, M.; Satgé, J. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Davies, A. G., Eds.; Pergamon: New York, 1995; Vol. 2, pp 137–216.

The reactivity of tetramesitylgermasilene toward methylmagnesium iodide (or bromide) under thermal conditions revealed some interesting and unexpected chemistry. It was found that, at elevated temperatures, the germyl Grignard intermediate generated by reaction of the methyl Grignard reagent with the germasilene underwent an unprecedented mesityl—methyl ligand exchange. The exchange was also observed upon addition of MeMgX to tetramesityldigermene at elevated temperatures. The formation of the products can be explained by α -elimination of MesMgI (or Br) from the germyl Grignard intermediate to give a germylene which subsequently reacts with the excess MeMgX. The intermediate germylene was trapped with 2,3-dimethylbutadiene, providing excellent support for the proposed mechanism.

We believe this is the first evidence for the facile elimination of (aryl) Grignard reagents from germyl Grignard reagents. Our findings are important for two reasons. Germylenes are important intermediates in organogermanium chemistry.²⁵ Our results provide a new and unique source of germylenes. Furthermore, considering the recent interest in germyl Grignard reagents,⁴ this new aspect of the reactivity of these compounds should play a critical role in understanding the chemical reactions involving these compounds. We are continuing our investigations into the generality of the addition of Grignard reagents and other organometallic reagents to stable dimetallenes as well as the chemistry of the resulting adducts.

Experimental Section

All experiments were carried out in flame-dried glassware under an atmosphere of argon. Toluene and Et_2O were freshly distilled from sodium/benzophenone. Methylmagnesium iodide and bromide were used in the following experiments. Methylmagnesium bromide was obtained from the Aldrich Chemical Co., whereas methylmagnesium iodide was prepared in the laboratory with magnesium purchased from Lancaster Chemical Co. and methyl iodide purchased from BDH. The choice of halide did not appear to influence the outcome of the reactions. Selection of which reagent was to be used was based solely on availability. Chromatography was carried out using a Chromatotron (Harrison Research) or on conventional silica gel preparative plates. Photolyses were carried out at 350 nm using a Rayonet photochemical reactor.

NMR spectra were recorded on a Varian Gemini 200 (200.1 MHz for ¹H, 50.3 MHz for ¹³C), an XL-300, or a Varian Gemini 300 (299.9 MHz for ¹H, 75.4 MHz for ¹³C, 59.6 MHz for ²⁹Si) using benzene- d_6 as a solvent, unless otherwise noted. The standards were as follows: residual C₆D₅H 7.15 ppm for ¹H spectra; C₆D₆ or CDCl₃ central transition for¹³C NMR spectra; and Me₄Si as an external standard, 0 ppm for ²⁹Si. IR spectra were recorded (cm⁻¹) as thin films on a Perkin-Elmer System 2000 FT IR spectrometer. A Finnegan MAT model 8230 instrument, with an ionizing voltage of 70 eV, was used to obtain electron impact mass spectra (reported in mass-to-charge units, *m/z*, with ion identity and peak intensities relative to the base peak in parentheses).

Photolysis of Hexamesitylsiladigermirane in the Presence of (Me₃Si)₃SiH Followed by Addition of Methylmagnesium Bromide. A solution of SiGe₂Mes₆ (40 mg, 0.046 mmol; contaminated with some Ge₃Mes₆) and excess (Me₃Si)₃SiH in toluene (4 mL) was photolyzed at -78 °C for 8 h. The reaction mixture was quenched with excess (100×) CH₃MgBr dissolved in diethyl ether. The reaction mixture was kept cold overnight and then allowed to warm gradually over 8 h. The reaction mixture was then hydrolyzed with saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with an Et₂O/toluene mixture. The combined organic extracts were dried over MgSO₄ and then filtered to remove the MgSO₄, followed by evaporation of the solvent. The residue was separated by preparative chromatography using the Chromatotron (1:9 CH₂Cl₂/hexanes) to give (Me₃SiO)₂(Me₃Si)SiGeMes₂H (6) (13 mg, 0.022 mmol, 48%) and a mixture of (dimesitylmethylsilyl)dimesitylgermane (**5**) and

(dimesitylmethylgermyl)dimesitylgermane (7) (17 mg) in a ratio of 10:1 as determined by 1 H NMR spectroscopy.

(Dimesitylmethylsilyl)dimesitylgermane (5): IR (thin film, cm⁻¹) 2921 (s), 2025 (m, Ge–H), 1603 (s), 1551 (w), 1451 (s), 1027 (m), 847 (s), 803 (m), 739 (m), 703 (w), 684 (w); ¹H NMR (ppm) 6.73 (s, 4 H, Mes H), 6.67 (s, 4 H, Mes H), 5.73 (s, 1 H, GeH), 2.28 (s), 2.25 (s, 24 H total, Mes oCH₃), 2.11 (s), 2.08 (s, 12 H total, Mes pCH₃), 1.24 (s, 3 H, SiCH₃); ¹³C NMR (ppm) 144.54, 143.86, 138.58, 137.67, 136.65, 134.37 (Mes C), 129.87, 129.02 (Mes CH), 24.82, 24.78, 20.99, 20.90 (Mes CH₃), 6.34 (Si–CH₃); ²⁹Si NMR (ppm) –17.83; MS (*m*/*z*) 594 (M⁺, 0.86), 431 (Mes₃Ge, 2.1), 312 (Mes₂Ge, 35), 281 (Mes₂SiCH₃, 100), 192 (MesGe – H, 14); high-resolution MS, calcd for C₃₇H₄₈-SiGe 594.2737, found 594.2521.

[Bis(trimethylsiloxy)(trimethylsilyl)silyl]dimesitylgermane (6): IR (thin film, cm⁻¹) 1995 (m, GeH); ¹H NMR (ppm) 6.78 (s, 4 H, Mes H), 5.32 (s, 1 H, GeH), 2.53 (s, 12 H, Mes oCH₃), 2.11 (s, 6 H, Mes pCH₃), 0.15 (s, 9 H, SiSi(CH₃)₃), 0.14 (s, 18 H, OSi(CH₃)₃); ¹³C NMR (ppm) 143.69, 137.66, 135.49, 128.76 (Mes C), 25.29 (Mes oCH₃), 21.01 (Mes pCH₃), 2.25 (OSi(CH₃)₃), -1.56 (SiSi(CH₃)₃); ²⁹Si NMR (ppm) 8.71 (decet, OSi(CH₃)₃, J = 6.6 Hz), -15.99 (multiplet, central Si), -20.58 (decet, Si(CH₃)₃, J = 6.6 Hz); MS (m/z) 592 (M⁺, 3), 577 (M⁺ - CH₃, 1), 312 (Mes₂Ge, 10), 279 ((Me₃SiO)₂SiSiMe₃, 100), 191 (51), 117 (Me₃SiOSi, 13), 91 (Me₃SiO, 14), 73 (Me₃Si, 40); high-resolution MS calcd for C₂₇H₅₀GeO₂Si₄ 592.2100, found 592.2080, calcd for C₉H₂₇O₂Si₄ 279.1088, found 279.1095.

Photolysis of Hexamesitylcyclotrigermane in the Presence of (Me₃Si)₃SiH Followed by Addition of Methylmagnesium Bromide. A solution of Ge₃Mes₆ (100 mg, 0.11 mmol) and excess (Me₃Si)₃SiH in toluene (4 mL) was photolyzed at -78 °C for 16 h. The reaction mixture was quenched with excess (5×) CH₃MgBr dissolved in diethyl ether. The green-yellow color of the solution disappeared immediately upon addition of the Grignard reagent. The reaction mixture was then hydrolyzed with saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with Et₂O. The combined organic extracts were dried over MgSO₄ and then filtered to remove the MgSO₄, followed by evaporation of the solvent. The products were separated by preparative chromatography using the Chromatotron (8:92 CH₂Cl₂/hexanes) to give (Me₃SiO)₂(Me₃Si)-SiGeMes₂H (**6**) (56 mg, 0.095 mmol, 86%) and (dimesitylmethylgermyl)-dimesitylgermane^{4b} (**7**) (50 mg, 0.078 mmol, 71%).

Photolysis of **2** (50 mg) under the same conditions followed by quenching the reaction mixture with excess methanol gave a 1:1 ratio of **6** and Mes₂(OMe)GeGeMes₂H⁶ as determined by ¹H NMR spectroscopy. The reaction was worked up in the usual manner and the resulting product mixture separated by preparative thin-layer chromatography (92:8 hexanes/CH₂Cl₂) to give **6** (2.6 mg) and Mes₂(OMe)-GeGeMes₂H (5.1 mg).

(Dimesitylmethylgermyl)dimesitylgermane (7): IR (thin film, cm⁻¹) 2965 (s), 2922 (s), 2029 (m, Ge–H), 1601 (m), 1555 (m), 1453 (s), 1288 (w), 1261 (w), 1027 (m), 848 (m), 805 (m); ¹H NMR (ppm) 6.71 (s, 4 H, Mes H), 6.69 (s, 4 H, Mes H), 5.90 (s, 1 H, GeH), 2.28 (s, 12 H, Mes oCH₃), 2.25 (s, 12 H, Mes oCH₃), 2.10, 2.09 (each s, 12 H total, Mes pCH₃), 1.30 (s, 3 H, GeCH₃); ¹³C NMR (ppm) 143.77, 143.57, 138.44, 137.91, 137.84, 136.11 (Mes C), 129.56, 129.07 (Mes CH), 24.59, 21.00, 20.89 (Mes CH₃), 7.84 (GeCH₃); MS (*m*/*z*) 637 (M⁺ – H, 0.3), 623 (M⁺ – CH₃, 0.2), 431 (Mes₃Ge, 18), 327 (Mes₂-GeCH₃, 100), 313 (Mes₂GeH, 14), 191 (MesGe, 14); high-resolution MS calcd for $C_{37}H_{47}^{74}Ge^{72}Ge$ (M⁺ – H) 637.2110, found 637.2098.

Thermolysis of Hexamesitylsiladigermirane in the Presence of Methylmagnesium Bromide. SiGe₂Mes₆ (100 mg, 0.11 mmol) and approximately 2 mL of 3.1 M CH₃MgBr in diethyl ether (excess) were dissolved in toluene (4 mL) and heated in an oil bath at 110 °C for 18 h. A cream-colored precipitate was observed. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with ether/toluene. The combined organic extracts were dried over MgSO₄. Filtration to remove the MgSO₄ followed by evaporation of the solvent yields **9** (40 mg, 95%). Compound **9** can be purified by chromatography.

(Dimesitylmethylsilyl)dimethylgermane (9): IR (thin film, cm⁻¹) 2001 (m, GeH); ¹H NMR (ppm) 6.69 (s, 4 H, Mes H), 4.15 (septet, 1

H, J = 4 Hz, GeH), 2.33 (s, 12 H, Mes oCH₃), 2.09 (s, 6 H, Mes pCH₃), 0.82 (s, 3 H, SiCH₃), 0.30 (d, 6 H, J = 4 Hz, GeCH₃); ¹³C NMR (ppm) 143.18, 138.34, 133.98, 129.53 (Mes C), 24.53, 20.97 (Mes CH₃), 3.71 (SiCH₃), -4.95 (GeCH₃); ²⁹Si NMR (ppm) -20.20; MS (m/z) 386 (M⁺, 2), 281 (Mes₂SiCH₃, 100), 161 (MesSiCH₃ – H, 13); high-resolution MS calcd for C₂₁H₃₁SiGe (M⁺ – H) 385.14068, found 385.14072.

The reaction was repeated (15 mg of SiGe₂Mes₆). The thermolysis was carried out in C₆D₆ for 18 h at 105 °C in the presence of excess MeMgBr in ether. The reaction mixture was quenched with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with deuterated benzene. The combined organic extracts were dried over MgSO₄ and then analyzed by ¹H NMR spectroscopy. Mesitylene was found to be present as confirmed by spiking the sample with authentic material.

The reaction was repeated (30 mg of $SiGe_2Mes_6$ contaminated with Ge_3Mes_6). The reaction was hydrolyzed with D_2O and then worked up in the usual manner. The product was purified by chromatography (1:9 CH₂Cl₂/hexanes) to give a mixture of **16** and (dimesitylmethylgermyl)deuteriodimethylgermane.

(Dimesitylmethylsilyl)deuteriodimethylgermane (16): ¹H NMR (ppm) 6.71, 6.69, 2.33, 2.10, 2.09, 0.90, 0.81, 0.32, 0.29 (all singlets); ²H{¹H} NMR (C₆H₆, ppm) 4.34 (s, GeD of (dimesitylmethylgermyl)-deuteriodimethylgermane), 4.17 (GeD of 16).

Thermolysis of Hexamesitylcyclotrigermane in the Presence of Methylmagnesium Bromide. (1) Ge₃Mes₆ (100 mg, 0.11 mmol) and approximately 2 mL of 3.1 M CH₃MgBr in diethyl ether (excess) were dissolved in toluene (3 mL) and heated in an oil bath at 80 °C for 4 h. A white precipitate was observed to form. The reaction mixture was then hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with ether. The combined organic extracts were dried over MgSO₄ and filtered, and the solvents were evaporated. Analysis of the crude reaction mixture by ¹H NMR spectroscopy revealed the presence of **8**¹⁶ and **11**. Chromatographic separation (8:92 CH₂Cl₂/hexanes) yielded **11** (52 mg, 0.098 mmol, 89%). Compound **8** was not isolated.

(2) Ge₃Mes₆ (60 mg, 0.066 mmol) and approximately 1.5 mL of 3.1 M CH₃MgBr in diethyl ether (excess) were dissolved in toluene (4 mL) and heated in an oil bath at 105 °C for 18 h. Following this time, the reaction mixture was hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with ether. The combined organic extracts were dried over MgSO₄ and filtered, and the solvents were evaporated. Analysis of the crude reaction mixture by ¹H NMR spectroscopy revealed the presence of **10** and **11** in a 1:1.3 ratio, respectively. Chromatographic separation (Chromatotron; eluent varied from 8% CH₂Cl₂ in hexanes to 25%) of the reaction mixture gave **11** (17 mg, 0.033 mmol, 50%). Compound **10** was not isolated from this reaction mixture.

1,1,2-Trimesityl-1,2-dimethyldigermane (**11**): IR (thin film cm⁻¹) 2967 (s), 2919 (s), 2030 (m, GeH), 1602 (m), 1557 (m), 1454 (s), 1289 (w), 1235 (w), 1027 (w), 849 (s), 803 (s), 780 (s); ¹H NMR (ppm) 6.72 (s, Mes H), 6.70 (s, Mes H), 6.69 (s, Mes H), 5.19 (q, J = 4.1 Hz, GeH), 2.31 (s, Mes oCH₃), 2.19 (s, Mes oCH₃), 2.18 (s, Mes oCH₃), 2.11 (s, Mes pCH₃), 2.09 (s, Mes pCH₃), 0.97 (s, GeCH₃), 0.75 (d, J = 4.1 Hz, GeCH₃); ¹³C NMR (ppm) 144.09, 143.21, 142.89, 139.29, 138.53, 138.25, 138.03, 137.96, 134.87, 129.68, 129.57, 129.13, 25.21, 25.07, 24.98, 21.36, 21.28, 21.25, 5.55, -1.68; MS (m/z) 550 (4), 533 (M⁺, 3), 327 (Mes₂GeCH₃, 100), 312 (Mes₂Ge, 13), 221 (MesGe(CH₃)₂, 23), 206 (MesGeCH₃, 21), 191(MesGe, 16), 119 (Mes, 55).

Photolysis of Hexamesitylsiladigermirane in the Presence of Methylmagnesium Iodide Followed by Thermolysis. SiGe₂Mes₆ (50 mg, 0.058 mmol) and approximately 0.25 mL of 4 M CH₃MgI (excess) were dissolved in toluene (4 mL) and photolyzed at -60 °C for 4 h. The reaction mixture was then warmed to -10 °C and allowed to stand for 12 h. After standing at -10 °C, a small portion (approximately 1 mL) of the reaction mixture was removed and hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with hexanes (10 mL total). The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation, which yielded a white solid residue. Examination of this residue showed it to be a 1:1 mixture of

(dimesitylmethylsilyl)dimesitylgermane (5) and dimesitylmethylgermane¹⁶ (8). The original reaction mixture was heated to 110 °C (from -10 °C) for 6 h. The remaining reaction mixture was then hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with hexanes (20 mL total). The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation, which yielded a white solid residue. The crude reaction mixture was purified by preparative thin-layer chromatography (1:9 CH₂Cl₂/hexanes) to yield (dimesitylmethylsilyl)dimethylgermane (9) as the only identifiable product.

Photolysis of Hexamesitylcyclotrigermane in the Presence of Methylmagnesium Iodide Followed by Thermolysis. Ge₃Mes₆ (50 mg, 0.054 mmol) and approximately 0.25 mL of 4 M CH₃MgI (excess) were dissolved in toluene (5 mL) and photolyzed at -70 °C for 9 h. A small portion (approximately 1 mL) of the reaction mixture was removed and hydrolyzed with a saturated NH₄Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with hexanes (10 mL total). The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation, which yielded a white solid residue. Examination of this residue showed it to be a 1:1 mixture of (dimesitylmethylgermyl)dimesitylgermane (7) and dimesitylmethylgermane¹⁶ (8). The original reaction mixture was heated to 110 °C (from -70 °C) for 4 h. The reaction mixture was then hydrolyzed with a saturated NH4Cl solution. The aqueous and organic layers were separated, and the aqueous phase was extracted with hexanes (20 mL total). The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation, which yielded a white solid residue. The crude reaction mixture consisted mainly of (dimesitylmethylgermyl)dimethylgermane (10) as determined by ¹H NMR spectroscopy.

Thermolysis of Hexamesitylcyclotrigermane in the Presence of Methylmagnesium Iodide and GC-MS Analysis of Headspace Gas. Ge₃Mes₆ (70 mg, 0.075 mmol) and approximately 0.3 mL of 4 M CH₃-MgI (excess) were dissolved in toluene (5 mL) and heated to 110 °C for 12 h. Following this time, 100 μ L of the headspace gas was withdrawn from the reaction vessel and injected into a Varian Saturn 4D GC-MS (-40 °C). Once the reference GC-MS trace was obtained, the reaction was quenched by injecting 1 mL of a saturated NH₄Cl solution into the sealed reaction vessel. When the exothermic reaction due to quenching subsided, a second 100 μ L of the headspace gas was injected into the GC-MS. With the GC-MS analysis complete, the aqueous and organic layers of the hydrolyzed reaction mixture were separated, and the aqueous phase was extracted with hexanes. The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation. Analysis of the crude reaction mixture by ¹H NMR spectroscopy revealed the presence of 10 as the major product. Preparative thin-layer chromatography (5:95 CH₂Cl₂/ hexanes) gave 7 (21 mg, 60%) in pure form.

1,1-Dimesityl-1,2,2-trimethyldigermane (10): IR (thin film, cm⁻¹) 3032 (m), 2972 (s), 2920 (s), 2875 (m), 2008 (s, GeH), 1611 (m), 1563 (m), 1454 (m), 1417 (m), 1035 (m), 852 (m), 837 (m); ¹H NMR (ppm) 6.71 (s, 4 H, Mes H), 4.32 (septet, 1 H, J = 3.9 Hz, GeH), 2.33 (s, 12 H, Mes oCH₃), 2.10 (s, 6 H, Mes pCH₃), 0.90 (s, 3 H, GeCH₃), 0.32 (d, 6 H, J = 3.9 Hz, GeCH₃); ¹³C NMR (ppm) 142.57, 137.71, 137.66, 129.30, 24.56, 20.96, 3.83, 1.40; MS (m/z) 430 (M⁺, 4), 415 (M⁺ – CH₃, 1.6) 327 (Mes₂GeCH₃, 100), 221 (MesGe(CH₃)₂, 19), 193 (MesGe, 17), 119 (Mes, 17), 105 ((CH₃)₂GeH, 8); high-resolution MS calcd for C₂₁H₃₂⁷²Ge⁷⁴Ge 430.0937, found 430.0948.

Trimethylgermane: MS (*m*/*z*) 206 (10), 118 (85), 104 (100), 89 (50), 74 (15).

Thermolysis of Dimesityl(methyl)germylmagnesium Iodide and (Dimesitylmethylgermyl)dimesitylgermylmagnesium Iodide in the Presence of 2,3-Dimethylbutadiene. Ge₃Mes₆ (50 mg, 0.054 mmol) and 0.32 mL of 0.33 M CH₃MgI (0.11 mmol) were dissolved in toluene (5 mL) and photolyzed at -70 °C for 4 h. Approximately 0.5 mL of the reaction mixture was then hydrolyzed with a saturated NH₄Cl solution. Following extraction, analysis of this aliquot by ¹H NMR spectroscopy showed a 1:1 mixture of 7 and 8. Approximately 0.25 mL of 2,3-dimethylbutadiene was added to the remaining reaction mixture, which was then heated to 110 °C for 16 h. Following this time, the reaction mixture was quenched with NH₄Cl. The aqueous

and organic layers were separated, and the aqueous phase was extracted with hexanes. The combined organic extracts were dried over MgSO₄ prior to filtration and solvent evaporation. Separation of the reaction mixture by preparative thin-layer chromatography (12:88 CH₂Cl₂/ hexanes) gave **18** (10 mg, 0.017 mmol, 31%) and **19** (5 mg, 0.017 mmol, 32%), with the best results obtained if the preparative chromatography plate was eluted twice. In addition, **19** was very to difficult to visualize on the preparative plate. Under these solvent and elution conditions, **19** has an R_f value of approximately 0.80.

1-(Dimesitylmethylgermyl)-1-mesityl-3,4-dimethyl-1-germacyclopent-3-ene (18): IR (thin film, cm⁻¹) 3024 (w), 2927 (s), 2845 (s), 1705 (w), 1608 (m), 1566 (m), 1503 (m), 1458 (m), 1409 (m), 1379 (w), 1058 (m), 882 (w), 852 (w), 834 (w); ¹H NMR (ppm) 6.75 (s, 2 H, Mes H), 6.69 (s, 4 H, Mes H), 2.28 (d, 2 H, AB of CH_AH_B, J = 15 Hz), 2.21 (s, 12 H, Mes CH₃), 2.15 (s, 9 H, Mes CH₃), 2.11 (s, 6 H, Mes CH₃), 2.05 (d, 2 H, AB of CH_AH_B, J = 15 Hz), 1.69 (s, 6 H, =C-CH₃), 0.98 (s, 3 H, GeCH₃); ¹³C NMR (ppm) 143.53, 142.70, 139.31, 137.85, 137.45, 136.92, 131.37 (Mes C and =C-CH₃), 129.12, 128.73 (Mes CH₃); 1.14 (=C-CH₂), 25.06, 24.63, 21.07, 20.96, 19.16 (Mes CH₃), 5.03 (GeCH₃); MS (m/z) 598 (M⁺, 1.5), 518 (Mes₂(CH₃)-GeGeMes, 25), 480 (M⁺ - Mes, 1.5), 431 (Mes₃Ge, 5) 327 (Mes₂-GeCH₃, 100), 193 (MesGe, 20); high-resolution MS calcd for C₃₄H₄₆⁷⁴-Ge⁷²Ge 600.2032, found 600.1918.

1-Mesityl-1,3,4-trimethyl-1-germacyclopent-3-ene (19): IR (thin film, cm⁻¹) 3024 (w), 2927 (s), 2867 (m), 1615 (m), 1566 (m), 1499 (s), 1454 (m), 1413 (m), 1058 (m), 882 (w), 830 (w); ¹H NMR (ppm) 6.78 (s, 2 H, Mes H), 2.29 (s, 6 H, Mes oCH₃), 2.16 (s, 3 H, Mes pCH₃), 2.03 (d, 2 H, AB of CH_AH_B, J = 15 Hz), 1.75 (bs with fine splitting, 6 H, =C-CH₃), 1.68 (d, 2 H, AB of CH_AH_B, J = 15 Hz), 0.42 (s, 3 H, GeCH₃); ¹³C NMR (ppm) 142.95, 130.45, 128.81, 29.95, 24.29, 21.06, 19.41, -1.13; MS (*m*/*z*) 290 (M⁺, 30), 208 (MesGeCH₃, 30), 193 (MesGe, 100), 57 (C₄H₉, 28); high-resolution MS calcd for C₁₆H₂₄⁷⁴Ge, 290.1090, found 290.1091.

Acknowledgment. Financial assistance from the Natural Sciences and Engineering Research Council of Canada in the form of a Summer Research Assistantship to M.R.N. and a grant to K.M.B. is gratefully acknowledged. We also thank L. Scott Black for technical assistance.

Supporting Information Available: ¹H NMR spectra of **6**, **7**, **9**, **10**, **11**, **18**, and **19** (7 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA981787K